
Multi-Robot Grasp Planning for Sequential Assembly Operations

Mehmet Dogar and Andrew Spielberg and Daniela Rus

Abstract— We formulate multi-robot grasp planning for
sequential assembly operations as a constraint satisfaction
problem (CSP) and present an algorithm to solve it. Our
algorithm, through the assumption of feasible regrasps, divides
the CSP into independent smaller problems which can be
solved very fast. The algorithm then improves this solution by
removing increasing number of regrasps from the plan, yielding
an anytime planner.

I. INTRODUCTION

We are interested in multi-robot systems which can per-
form sequences of assembly operations to build complex
structures. Each assembly operation in the sequence re-
quires multiple robots to grasp multiple parts and bring
them together in space in specific relative poses. Once an
assembly operation is complete, the semi-assembled structure
can be transferred to subsequent assembly operations to be
combined with even more parts. We present an example in
Fig. 1 where a team of robots assemble a chair by attaching
parts to each other with fasteners.

This paper addresses the problem of finding robot configu-
rations which grasp the parts during a sequence of assembly
operations. We define a robot configuration as the complete
pose of an individual robot. The problem imposes a variety
of constraints on the robot configurations. Take the assembly
operation scenes in Fig. 1. We immediately see one type of
constraint: the robot bodies must not intersect and must avoid
collision. In effect, they must “share” the free space.

The sequential nature of the task, however, may result
in even more constraints. A robot may choose one of two
strategies to move a semi-assembled structure from one as-
sembly operation to the next (Fig. 1): The robot can regrasp,
changing its grasp on the semi-assembled structure, or the
robot can transfer the semi-assembled structure directly to
the next operation, keeping the same grasp.

Both strategies have their advantages. If the robot chooses
transfer, it avoids extra regrasp operations during execution.
Regrasps, on the other hand, make the planning problem
easier by decoupling sequence of operations from each other:
In Fig. 1, since the robot commits to transfer the structure
between assembly operations 1 & 2, it must plan a grasp
of the part which works for both operations. The coupling
between multiple operations makes it extremely expensive to
solve problems with long sequences of assembly operations

Humans use a combination of both strategies during
manipulation: we regrasp when we need to, but we are
also able to use transfer grasps which work for more than
one operation. Given a sequence of assembly operations,

Computer Science and Artificial Intelligence Lab, MIT
{mdogar,aespielberg,rus}@csail.mit.edu

how can a team of robots decide when to regrasp and
when to transfer? We present a planner with this capability:
Our algorithm trades off between regrasps and transfers
while generating collision-free robot configurations for each
assembly operation.

We formulate multi-robot grasp planning as a constraint
satisfaction problem (CSP). In this representation every
robotic grasp in every assembly operation becomes a vari-
able. Every variable must be assigned a robot configuration
which grasps a particular part or semi-assembled structure.
We impose two types of constraints: collision constraints be-
tween variables of the same assembly operation; and transfer
constraints between variables in subsequent operations.

Ideally, a plan involves no regrasps and the assembly is
transferred between operations smoothly. Trying to find a
plan with no regrasps, however, means having transfer con-
straints between all operations. A complete solution requires
solving for all the assembly operations at once. Complete
CSP solvers display exponential complexity with respect
to the number of variables. Solving the multi-robot grasp
planning problem then becomes very expensive very fast
with increasing number of assembly operations.

Instead, our algorithm starts with a strategy to perform
regrasps between all operations. Our key assumption is that,
regrasps between any two grasps (possibly through a series
of intermediate grasps) are always feasible. This decouples
assembly operations from each other. The resulting problem
can be solved very fast by solving a small CSP separately
for each assembly operation.

After finding this initial solution, our algorithm continues
to find solutions with fewer regrasps by imposing sets of
transfer constraints. As such solutions are found, the algo-
rithm increases the number of transfer constraints imposed.

Our algorithm is an anytime planner: Given more time, it
generates plans with fewer regrasps and more transfers.

When imposing a new set of transfer constraints, our al-
gorithm does not solve the CSP from scratch: Solutions with
fewer (or no) transfer constraints are readily available from
previous cycles. We use state-of-the-art local search methods
for CSPs, which are initialized with partial solutions. Local-
search methods work only in a locality of the constraint graph
and therefore their runtime is not affected by the full size of
the CSP [1], leading to very fast updates.

A. Related work

Recent work by Lozano-Pérez and Kaelbling [2] represent
manipulation problems as CSPs. These geometric CSPs are
formulated by a higher-level task planner. Their focus is on



Transfer RegraspAssembly operation 1 Assembly operation 2 Assembly operation 3

Fig. 1: Multi-robot assembly of a chair.

the interface between the task planner and CSP formula-
tion, and they propose methods for constructing the CSPs
efficiently. The CSPs are solved by an off-the-shelf solver.
We propose an algorithm to solve the CSP itself by using
domain-specific assumptions, such as feasible regrasps.

The effectiveness and necessity of regrasping during ma-
nipulation have been recognized [3, 4]. We show that assum-
ing feasibility of regrasps we can simplify the CSP solutions
of manipulation plans significantly. Structures similar to the
grasp-placement space [5] or the grasp-graph [6] can be
precomputed to satisfy our regrasp feasibility assumption.

Other grasp planners that take into account task constraints
exist [7, 8, 9]. We focus on planning such grasps in a
sequential and multi-robot context.

II. PROBLEM

An assembly is a collection of simple parts at spe-
cific relative poses. Robots perform an assembly operation,
o = (Ain, aout, p), to produce an output assembly aout from
a set of input assemblies Ain. We also assume that a three-
dimensional pose in the environment, p, is specified as the
location of an operation.

During an assembly operation, input assemblies Ain must
be grasped and supported by robots at their respective poses
in aout at operation pose p. We assume that a local controller
exists to perform the fastening/screwing, once the parts are
at the poses specified by the assembly operation.

We use q to represent a robot configuration, which in-
cludes base pose and manipulator joint configurations. If a
robot configuration q places the robot gripper at a grasping
pose for assembly a during operation o, we say that “q is a
grasping robot configuration for a during o”.

Robots perform a sequence of assembly operations
O = [oi]

N
i=1 to build large structures: output assemblies of

earlier operations are used as inputs in later operations.

A. CSP Formulation

We formulate the problem of multi-robot grasp planning
for sequential assembly operations as a CSP. A CSP is
defined by a set of variables X, a set of possible values
V(x) that each variable x can be assigned with, and a set
of constraints specifying consistent assignments of values to
variables. A solution to the CSP is an assignment of values
to all the variables that is consistent with all the constraints.

Variables: For our problem, we create one variable for the
grasp of each input assembly of each assembly operation. We

use oxa to represent the variable correponding to the grasp
of assembly a ∈ Ain of operation o ∈ O.

Values: The set of values for the variable oxa is the set
of robot configurations grasping the assembly:

V (oxa) = {q | q is a grasping robot configuration
for a during o.}

In general there can be a continuous set of robot config-
urations grasping a. We discretize this continuous set by
sampling uniformly at a fine resolution.

Constraints: We define two sets of constraints: collision
constraints and transfer constraints. A collision constraint
c(x, x′) enforces that two robot configurations x and x′

do not collide. We create a collision constraint c(oxa, oxa′
)

between each pair of variables of the same operation o.
A transfer constraint t(x, x′) enforces that robot configu-

rations x and x′ grasp the same part while placing the robot
gripper at the same pose on the part. We can create a transfer
constraint between variables of two consecutive operations.
Suppose o = (Ain, aout, p) and o′ = (A′

in, a
′
out, p

′) are
consecutive operations such that aout ∈ A′

in; i.e. the output
assembly of o is one of the input assemblies of o′. We can
create a transfer constraint t(oxa, o

′
xaout) for any a ∈ Ain.

If no transfer constraint with a previous operation exists
for such an input assembly, then the robots will need to
perform a regrasp.

III. ALGORITHM

Our algorithm (Alg. 1) first finds an “all-regrasps” plan,
and then imposes transfer constraints.

We first assume no transfer constraints between opera-
tions. Collision constraints remain, but they only constrain
variables within an operation. Hence, the constraint graph
is divided into N connected components where N is the
number of assembly operations.

We solve each of these connected components separately
using a complete CSP solver (lines 2-4 in Alg. 1). We
use backtracking search with forward-checking [1]. The
combination of solutions for all operations give the overall
“all-regrasps” solution (line 5).

Once the “all-regrasps” solution is found, our algo-
rithm starts imposing a gradually increasing number of
transfer constraints (line 6). On line 7, the function
“NCombinationsOfTransConst(n)” generates a list of all
valid n-combinations of transfer constraints. The algorithm



Algorithm 1 Multi-robot grasp planning for sequential as-
sembly operations

Input: O = [oi]
N
i=1 is a sequence of assembly operations.

1: X,V ← ComputeCSPVariablesAndValues(O)
2: for each oi in O do
3: C[oi] ← CollisionConstraints(oi)
4: sol[oi] ← SolveCSP(X[oi] ,V[oi] ,C[oi])
5: best sol ← {sol[oi]}Ni=1

6: for n = 1 to NMaxTransferConstraints do
7: for each T in NCombinationsOfTransConst(n) do
8: sol ← SolveCSPLocal(X,V, {C,T}, best sol)
9: if sol exists then

10: best sol ← sol
11: break

then loops over this list (line 7) trying to solve the new CSP
by imposing the set of n transfer constraints together with the
collision constraints (line 8). If a solution is found for a set
of transfer constraints with size n, the solution is recorded as
the new best solution, and the algorithm progresses to sets of
size n+ 1 (lines 9-11). One can stop the algorithm anytime
after the “all-regrasps” solution is found and use the current
best solution.

We use local seach techniques for CSPs when we impose
transfer constraints (line 8). Local techniques starts with
an assignment of values to variables, identifies the conflict
regions in the constraint graph, and tries to resolve the
conflict only in the locality of these regions. Our algorithm
re-uses the latest best solution to seed the local search. We
use an implementation of the min-conflicts algorithm [1].

Our algorithm is complete: If there is a solution to the
problem, our algorithm will at least return the “all-regrasps”
solution, as we are using a complete CSP solver in the first
part of our algorithm. Since local search methods, which
we use in the second part of our algorithm, do not exhaust
the search space, our algorithm may not be able to find the
optimal solution; i.e. the solution with the minimum number
of regrasps. Local search techniques, nevertheless, are known
to display good performance in real world problems [1].

IV. EXPERIMENTS AND RESULTS

We implemented and evaluated our algorithm on an
example chair assembly operation. The number of robots
required by the operations are 3, 3, and 4. The operations
require the semi-assembled structures to be transferred two
times: between operations 1-2, and 2-3. We implemented our
algorithm and evaluated it in the OpenRAVE environment
[10] with four KUKA YouBot robot models .

We ran our algorithm on the chair example 10 times. In 9
of these runs, our algorithm found the optimal solution with
no regrasps (Fig. 3), and in 1 run it generated a solution
with 1 regrasp and 1 transfer (Fig. 1). We plot the time it
takes our algorithm to generate plans with different number
of regrasps in Fig. 2. The horizontal bars show the standard
deviations. Our algorithm generates the “all-regrasps” solu-
tion on average at 0.7 seconds and then gradually improves
the solution on average every 0.1 seconds.

Fig. 2: Time to generate plans with decreasing number of
regrasps.

Fig. 3: Solution for the assembly of our chair example.

Alg. 1 Naive optimal

Chair 0.86 (0.19) 255.36 (282.01)

TABLE I: Average planning times in seconds. Standard
deviations are shown in parantheses.

We present an example optimal plan in Fig. 3. The left-
most robot holding onto the side of the chair keeps its grasp
fixed and transfers the semi-assembled structures between
operations.

We also compare the performance of our algorithm with
another algorithm which starts with the maximum number
of transfer constraints it can impose, runs a complete CSP
solver, and reduces the number of transfer constraints as
solutions cannot be found. This algorithm is optimal, but also
naive in that it tries to solve the full CSP at once. In Tab. I
we present the planning times of our algorithm (Alg. 1) and
the naive optimal algorithm. Our algorithm is two orders of
magnitude faster.

REFERENCES
[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

2nd ed., 2003.
[2] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for

solving sequential manipulation planning problems,” in IROS, 2014.
[3] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson,

P. Tournassoud, and A. Lanusse, “Handey: A robot system that
recognizes, plans, and manipulates,” in ICRA, 1987.

[4] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” IJRR, vol. 23, no. 7-8, 2004.

[5] P. Tournassoud, T. Lozano-Pérez, and E. Mazer, “Regrasping,” in
ICRA, 1987.

[6] N. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srinivasa, M. Erdmann,
M. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge, “Extrinsic
dexterity: In-hand manipulation with external forces,” in ICRA, 2014.

[7] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered envi-
ronments for dexterous hands,” in Humanoids, 2008.

[8] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” IJRR, 2011.

[9] H. Dang and P. K. Allen, “Semantic grasping: Planning robotic grasps
functionally suitable for an object manipulation task,” in IROS, 2012.

[10] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, CMU, Robotics Institute, August 2010.


	I INTRODUCTION
	I-A Related work

	II Problem
	II-A CSP Formulation

	III Algorithm
	IV Experiments and Results

